
IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 12, December 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51231 144

A Study on Efficient FTL Algorithms for Flash

Memory Systems

Sunil Kim
1
 and Jun-Yong Lee

1

Department of Computer Engineering, School of Engineering, Hongik University, Seoul, Korea
1

Abstract: This paper represents a survey on NAND-type flash memory and FTL algorithms which are used to improve

the performance of flash memory. Flash memory is widely used as data storage and various embedded devices

nowadays. The most attractive feature of flash memory is that the stored data is non-volatile and can be updated

erase/write operation. But, every block in flash memory has a limited write/erase cycle. In order to manage these

problems, a software module called FTL (Flash Translation Layer) algorithm is used. Various FTL algorithms have

been proposed. This paper surveys the characteristics of those algorithms and their features.

Keywords: Computer Architecture, Embedded system, FTL, NAND flash memory.

I. INTRODUCTION

Flash memory is non-volatile memory device which can

be erased and reprogrammed electrically. Flash memory

was evolved from EEPROM (Electrically Erasable

Programmable Read Only Memory). There are two main

types of flash memory, which are NAND-type flash

memory and NOR-type flash memory. NAND-type flash

memory can be written and read in blocks or pages, while

NOR-type flash memory allows a single word or byte to

be written or read independently.

The NAND-type is primarily used in main memory, USB

devices, solid-state drives and other general purpose

storage devices. The NOR-type is used as a replacement of

EPROM or certain kinds of ROM due to the

characteristics of random access capability.

This paper surveys on the various schemes of FTL (Flash

Translation Level) for flash file system regarding the

NAND-type flash memory, as NAND-type flash memory

is mostly used computer memory devices nowadays.

FTL is the driver which works in conjunction with an

existing operating system to enable flash memory appear

to the system like a general disk drive. FTL creates virtual

small blocks of data or sectors out of flash memory’s large

blocks. Then it manages data on the flash so that it appears

to be written in place when it is being stored in the

different spots in the flash.

II. NAND MEMORY OVERVIEW

The most popular flash memory cell is based on the

Floating Gate (FG) technology. A MOS transistor is built

with two overlapping gates rather than a single one. The

first one is completely surrounded by oxide, while the

second one is contacted to form the gate terminal. The

isolated gate constitutes a trap for electrons, which

guarantees charge retention for years.

The operation performed to inject and remove electrons

from the isolated gate are called program and erase,

respectively. These operations modify threshold voltage

VTH of the memory cell, which is a special type of MOS

transistor. Applying a fixed voltage to cell’s terminals, it is

then possible to discriminate two storage levels of one and

zero

Fig. 1.Structure of NAND memory cell and its symbol

A. NAND memory array

The memory cells are packed to form a matrix in order to

optimize silicon area occupation.

Fig. 2. NAND string and NAND array

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 12, December 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51231 145

In the NAND string, the cells are connected in serried, in

groups of 32 or 64. Two selection transistors are placed at

the edges of the string, to ensure the connections to the

source line (through MSL) and to the bit line (through MDL).

Each NAND string shares the bitline contact with another

string. Control gates are connected through wordlines

(WLs).

Logical pages are made up by cells belonging to the same

wordline. The number fo pages per wordline is related to

the storage capabilities of the memory cell. Depending on

the number of storage levels, flash memories are referred

to in different ways: SLC memories store 1 bit per cell,

MLC memories store 2 bits per cell, 8LC stores 3 bits per

cell and so on.

B. Basic operations

When we read a cell, its gate is driven at VREAD (0 V),

while the other cells are biased at VPASS,R (usually 4~5 V),

so that they can act as pass-transistors, regardless the value

of their threshold voltages. In fact, an erased flash cell has

a VTH smaller than 0 V; vice versa, a written cell has a

positive VTH but, however smaller than 4 V. In practice,

biasing the gate of the selected cell with a voltage equal to

0 V, the series of all the cells will conduct current only if

the addressed cell is erased.

Programming of NAND memories exploits the quantum-

effect of electron tunneling in the presence of a strong

electric field. In particular, depending on the polarity of

the electric field applied, program or erase take place.

During the programming, the number of electrons crossing

the oxide is a function of the electric field: in fact, the

grater such field is, the greater the injection probability is.

Thus , in order to improve the program performances, it is

essential to have high electric fields available and

therefore high voltages. This requirement is one of the

main drawbacks of this program method, since the oxide

degradation is impacted by these voltages.

NAND memory is placed in a triple-well structure.

Usually, each plane has its own triple-well. The source

terminal is shared by all the blocks. In this way the matrix

is more compact and the multiplicity of the structures

which bias the iP-well is drastically reduced. The electrical

erase is achieved by biasing the iP-well with a high

voltage and keeping grounded the wordlines of the sector

to be erased. Therefore, NAND technologies do not need

negative voltages.

C. Logic organization

NAND memory contains information organized in a

specific way: pages and blocks. A block is the smallest

erasable unit. Generally, there are a power of two blocks

within any device. Each block contains multiple pages.

The number of pages within a block is typically multiple

of 16. A page is the smallest addressable unit for reading

and writing. Each page is composed of main area and

spare area. Main area can range from 4 to 8 kB or even

16kB. Spare area can be used for CC and system pointers

and it is in the order of a couple of hundreds bytes every

4k of main area.

III. THE FLASH TRANSLATION LAYER

Among the total capacity of NAND flash memory, less

than four percent of memory is hidden from the consumers

for implementing the FTL algorithm. This hidden capacity

includes the spare area and some spare blocks given to the

FTL programmers to use accordingly. Thus, the number of

spare blocks needed for the FTL algorithm is different,

and the performance evaluation can also be dramatically

affected on the number of spare blocks.

Fig. 3.Mapping process of flash memory

The methods of utilizing the spare blocks for enhancing

the performance and durability of flash memory is decided

by a software layer called FTL. The basic role of FTL is

explained by the general organization of ND flash memory

system.

The host system views the flash memory as a hard disk-

like block device, and thus the file system issues read or

write commands with logical addresses to read from, or to

write data to, specific addresses of flash memory. The

physical addresses corresponding to the logical

addressesare determined by a mapping algorithm of FTL.

During the address translation, FTL looks up the address

mapping table. The mapping table is stored in SRAM, a

fast but expensive memory, which is used for mapping

logical addresses to physical addresses in the unit of sector

or block.

When issuing overwrites, FTL redirects the physical

address to an empty location, thus avoiding the erase

operations. After managing an overwrite, FTL changes the

address mapping information in SRAM. The outdated

block can be erased later. The techniques of adding

functions for flash memory in the file system have been

used in the past. However, for compatibility with the

existing file system, the tendency is moving in the

direction of having a device driver as a separate layer.

IV. PERFORMANCE IMPROVEMENT USING FTL

ALGORITHMS

The FTL algorithm has three functions coordinating with

each other. They are basic mapping, performance

enhancement and durability enhancement. Implementing

each FTL algorithm can be slightly different depending on

the small block and large block flash memory. In this

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 12, December 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51231 146

section, the FTL algorithms based on the small block flash

memory are discussed in detail.

A. Basic mapping algorithm

The mapping technique is the process of mapping the

physical blocks to the logical blocks for achieving easy

and efficient data access to the block. The algorithms are

categorized as sector mapping algorithm, block mapping

algorithm and hybrid mapping algorithm.

The sector mapping algorithm is a naive and intuitive FTL

algorithm. In the sector mapping, every logical sector is

mapped to a corresponding physical sector. Therefore, if

there are n logical sectors seen by the file system, then the

row size of the logical to physical mapping table is n.

As the sector mapping algorithm requires a large amount

of RAM, it is hardly suitable for small embedded system.

To overcome this memory issue, Takayuki proposed the

block mapping algorithm. The basic idea of block

mapping is to contain the mapping table in the unit of

block.

In the block mapping algorithm, the row size of the logical

to physical mapping table corresponds to the number of

blocks in flash memory. Many performance enhancing

algorithm use the block mapping technique, since it

requires small size mapping information space. However,

if the file system issues many write commands with

identical LSNs, then this will lead to severe performance

degradation due to write and erase operations.

The hybrid mapping is introduced due to the

disadvantages of both sector and block mapping

algorithms. The hybrid mapping uses both block mapping

and sector mapping. First, it uses block mapping to

achieve the corresponding physical block, and then it uses

a sector mapping to locate an available empty sector

within the physical block.

B. Performance enhancement

The unit of mapping algorithm can be defined in terms of

sectors, pages and blocks. As the granularity of the

mapping table gets finer, the performance increases while

the cost of RAM also increases as mentioned earlier. On

the other hand, the coarser granularity gives lower cost of

RAM, but degraded performance. It is the duty of

performance enhancing algorithms to identify the methods

to increase the performance while decreasing the cost of

RAM. Therefore, the basic mapping algorithms are

modified to efficiently utilize the spare blocks in order to

reduce overall number of read/write/erase operations.

Previous performance enhancing algorithms are log-sector

scheme, log-block scheme, and state-transition scheme.

They are based on the partial programming, basic mapping

algorithms, and static/dynamic allocation, which were

discussed before.

C. Durability enhancement

Every block in flash memory has a program/erase cycle

limit. When a block reaches the program/erase cycle limit,

the block wears out and the data on that block cannot be

reliable. Therefore FTL helps to extend the life of flash

memory by reducing the total number of erase operations

and by evenly distributing the erase operations to all the

blocks.

Previous works have not clearly demarked the differences

between wear-leveling algorithms and cleaning policies.

Some have mixed the terms together while others

separated each other with very unclear demarcation. The

two terms can be separated depending upon their level of

monitoring.

The wear-leveling algorithms are characterized by the

block-level monitoring whereas the cleaning policies with

sector/page-level monitoring. If the level of monitoring

gets finer, the extra read/write operations increases thus

degrading the performance and durability of flash memory.

V. CONCLUSION

In this study, we surveyed the characteristics of NAND-

type flash memory and various features of FTL algorithms.

There have been many studies on flash memories,

especially on NAND-type flash memory due to its low

electric power, non-volatile storage, high performance,

physical stability and portability.

We have explained the hardware organization of small-

block and large-block NAND-type flash memory and

classified several functions of FTL algorithms. Further

study on FTL algorithms to improve the performance of

flash memory can be achieved on the basis of this survey.

ACKNOWLEDGMENT

This work was supported by 2014 Hongik University

Research Fund.

REFERENCES

[1] G. Campardo, R. Micheloni, D. Novosel, “VLSI-Design of Non-

Volatile Memories,” Springer-Verlag, 2005.
[2] A. Kawaguchi, S. Nishioka, and H. Motoda, “A Flash-Memory

Based File System,” Proceedings of the USENIX Winter Technical

Conference, pp 15-164, 1995.
[3] J. Kim, J. M. Kim, S. Noh, S. L. Min, and Y. Cho, “ A Space-

Efficient Flash Translation Layer for Compact Flash System,” IEEE

Transactions on Consumer Electronics, Vol. 48, No. 2, p. 366-375,
May 2002.

[4] S.-W. Lee, D.-J.Park, T.-S.Chung, D.-H. Lee, .-W Park, and H.-J.

Song, “FAST: A Log-Buffer Based FTL Scheme with Fully
Associative Sector Translation,” 2005 US-Korea Conf. on Science,

Technology and Entrepreneurship, August 2005.
[5] T. Tanzawaet. al, “A Compact On-Chip ECC for Low Cost Flash

Memories, IEEE Journal of Solid-state Circuits Vol. 35, No. 11 pp.

662-669, May 1997.
[6] www.sdcard.com

[7] Samsung Electronics (2010) Nand flash memory.K9GAG08U0M

data book.

